

EN1998-1-2:2022: Composite Steel-Concrete Buildings

Dimitrios Lignos, dip-Ing., SIA Professor and Chair, Civil Engineering Institute École Polytechnique Fédérale de Lausanne (EPFL) Member of Project Team 2

24th January 2023

Contains rules for the design and verification of composite steel-concrete buildings in seismic regions

- Section 12.1 General
- Section 12.2 Basis of design
 Mostly the same with EN1998:2004
- Section 12.3 Materials
- Section 12.4 Structural types, behaviour factors, limits of seismic action & drift limits
- Section 12.5 Structural analysis
- Section 12.6 Verification to limit states
- Section 12.7 Design rules for DC1 behaviour
- Section 12.8 Design rules for dissipative (DC2, DC3) structural behaviour
- Section 12.9 Composite moment resisting frames in DC2 and DC3
- Section 12.10 Composite frames with concentric bracings in DC2 and DC3
- Section 12.11 Composite frames with eccentric bracings in DC2 and DC3
- Section 12.12 Composite frames with buckling restrained bracings
- Section 12.13 Composite dual frames in DC2 and DC3
- Section 12.14 Structural wall systems (RC & composite with structural steel elements)
- Annexes E, G (composite joints), H (column bases), I (design of slabs)

Section 12.4: Structural types and behaviour factors

	Ductility Class						
Structural type	DC2			DC3			
	$q_{\rm p}$	$q_{_{ m R}}$	q	$q_{_{ m D}}$	$q_{_{ m R}}$	q	
a) Composite moment resisting frames (CMRFs) Full-strength connections Portal frames and single-storey CMRFs with class 3 and 4 cross sections Portal frames and single-storey CMRFs with class 1 and 2 cross sections Multi-storey CMRFs Types above without or with unconnected interacting infills	See Table 11.2						
b) CMRFs with dissipative partial-strength connections	2,3	1,0	3,5	-	-	-	
c) Composite frames with concentric bracings	See Table 11.2						
d) Composite frames with eccentric bracings	See Table 11.2						
e) Composite inverted pendulum	See Table 11.2						
f) Composite dual frames CMRFs with concentric bracings CMRFs with eccentric bracings CMRFs with buckling restrained braces	See Table 11.2						
g) Composite structural wall systems Composite walls (Type 1 and 2) Composite or concrete walls coupled by steel or composite beams (Type 3)	2,2 2,2	1,0 1,0	3,5 3,5	3,0 3,3	1,0 1,0	4,5 5,0	

Section 12.6: Verification to limit states

• Limitation of interstorey drift angle at Significant Damage (SD) limit state:

Section 12.6: Verification to limit states (Cont.)

• Limitation of interstorey drift angle at Significant Damage (SD) limit state:

Composite frames with concentric/eccentric bracings

$$d_{r,\text{SD}} = \frac{\delta_{r,\text{SD}} - \delta_{r-1,\text{SD}}}{h_s} \le 0,015$$

Section 12.6: Verification to limit states (Cont.)

• Limitation of interstorey drift angle at Significant Damage (SD) limit state:

Composite structural wall systems of Type 1, 2 and 3

EAEE European Commission

Section 12.8: Design rules for dissipative (DC2, DC3) behaviour

- Local slenderness of cross sections within dissipative zones should be restricted
- For dissipative steel members 11.8.3 should be applied (Table 11.5)
- Encased or filled composite members under compression and/or bending:

Table 12.4			
Ductility class		DC2	DC3
Reference value of behaviour factor	<i>q</i> = 1,5	$1,5 < q \le 3,5$	<i>q</i> > 3,5
Partially or fully encased H- or I-cross section: $c/t_{\rm f}$ limits:	20 <i>ɛ</i>	14ε	9 <i>ɛ</i>
Filled rectangular cross section: h/t limits:	70 <i>ɛ</i>	52 <i>ɛ</i>	35 <i>ɛ</i>
Filled circular cross section: d/t limits:	125ε ²	90 <i>ε</i> ²	80 <i>ε</i> ²

Local buckling

Fracture

Farahi et al. 2022

Silva et al. 2016

Dimitrios Lignos

24th January 2023

Section 12.8: Design rules for dissipative (DC2, DC3) behaviour (Cont.)

• Encased or filled composite members under compression and/or bending:

EN1998:2004

Ductility class		DCH	
Reference value of behaviour factor	<i>q</i> = 1,5	$1,5 < q \le 4$	<i>q</i> > 4
Partially or fully encased H- or I-cross section: $c/t_{\rm f}$ limits:	20 <i>ε</i>	14ε	9 <i>ɛ</i>
Filled rectangular cross section: h/t limits:	52 <i>ɛ</i>	38 <i>ɛ</i>	24 <i>ɛ</i>
Filled circular cross section: d/t limits:	90 <i>ε</i> ²	85ε ²	80 <i>ε</i> ²

EN1998-1-2:2022

Ductility class		DC3	
Reference value of behaviour factor	<i>q</i> = 1,5	$1,5 < q \le 3,5$	<i>q</i> > 3,5
Partially or fully encased H- or I-cross section: $c/t_{\rm f}$ limits:	20 <i>ɛ</i>	14 <i>ɛ</i>	9 <i>ɛ</i>
Filled rectangular cross section: h/t limits:	70 <i>ɛ</i>	52ε	35 <i>ɛ</i>
Filled circular cross section: d/t limits:	$125\varepsilon^2$	<mark>90</mark> ε ²	80 <i>ε</i> ²

Dimitrios Lignos

European Com<u>missior</u>

Section 12.8.5: Verification of members in DC2 and DC3

• In DC2, the resistance and stability of members defined by structural type should be verified according to,

$M_{\rm Ed} = N_{\rm Ed,G} " + " \Omega N_{\rm Ed,E} \qquad M_{\rm Ed} = N_{\rm Ed}$	$M_{\rm Ed,G}$ " + " Ω $M_{\rm Ed,E}$	$V_{\rm Ed} = V_{\rm Ed,G} " + " \Omega V_{\rm Ed}$
Structural types	Ω	Members
Composite moment resisting frames (CMRFs): With full-strength connections	See Table 11.6	Columns
With partial-strength connections	2,0	Columns
Composite frames with concentric bracings	See Table 11.6	Beams and columns
Composite frames with eccentric bracings	See Table 11.6	Beams outside the link, braces and columns
Composite inverted pendulum structures	See Table 11.6	Columns
Composite dual frames		
CMRFs with concentric bracings	See Table 11 6	bracing; columns of the CMRF
CMRFs with eccentric bracings		Beams outside the link, braces and oclumns of the eccentricl bracing; columns of the CMRF
Composite structural wall systems Types 1, 2 and 3	2,0	None None

Section 12.8.6: Verification of composite beams in DC2 and DC3

• Composite beams in dissipative zones may be designed with full or partial shear connections in accordance with EN1994-1-1:2022 and a degree of composite action of at least 80%

- Composite beams with $d_{\rm b} \leq 500 mm$: The 25% reduction on shear resistance is neglected

Dimitrios Lignos

Section 12.8.6: Verification of composite beams in DC2 and DC3 (Cont.)

• Shear resistance of connectors

Standard push-out test

El Jisr and Lignos (2021)

Section 12.8.6: Verification of composite beams in DC2 and DC3 (Cont.)

• Shear resistance of connectors

Section 12.8.6: Verification of composite beams in DC2 and DC3 (Cont.)

Shear resistance of connectors

Steel beam (IPE330)

(El Jisr and Lignos, 2021)

Section 12.8.6: Verification of composite beams in DC2 and DC3 (Cont.)

Ductility requirements in composite steel beams in dissipative zones (positive bending)

Section 7.6.2 in EN1998:2004: Verification of composite beams

• Ductility requirements in composite steel beams (EN1998:2004)

 ε_{cu} (does not consider confinement)

Some remarks regarding ductility requirements for composite steel beams

• For a typical composite steel (S355) beam (f_{cd} =20MPa)

Some remarks regarding ductility requirements for composite steel beams

EN1998:2004

EN1998-1-2:2022

				Full	y Composite	e Beam					Fully Composite Beam										
	L[mm]				Z/	/d				Limit		L [mm]				Z,	/d				Linait
q		IPE270	IPE300	IPE330	IPE360	IPE400	IPE450	IPE500	IPE550	Limit	q		IPE270	IPE300	IPE330	IPE360	IPE400	IPE450	IPE500	IPE550	Limit
	5000	0.336	0.317	0.315	0.345	0.387	0.414	0.439	0.457	0.50		5000	0.338	0.318	0.337	0.364	0.403	0.428	0.451	0.467	0.64
	6000	0.332	0.313	0.297	0.284	0.332	0.368	0.400	0.424	0.50		6000	0.334	0.315	0.299	0.311	0.358	0.390	0.418	0.440	0.64
1.5	7000	0.327	0.309	0.294	0.281	0.277	0.323	0.361	0.391	0.50	1.5	7000	0.330	0.312	0.296	0.283	0.312	0.352	0.386	0.412	0.64
	8000	0.322	0.305	0.290	0.278	0.262	0.277	0.322	0.358	0.50		8000	0.326	0.308	0.293	0.280	0.266	0.313	0.354	0.385	0.64
	9000	0.318	0.301	0.287	0.275	0.259	0.242	0.284	0.325	0.50		9000	0.322	0.305	0.290	0.278	0.262	0.275	0.321	0.357	0.64
	5000	0.336	0.317	0.315	0.345	0.387	0.414	0.439	0.457	0.43		5000	0.338	0.318	0.337	0.364	0.403	0.428	0.451	0.467	0.57
	6000	0.332	0.313	0.297	0.284	0.332	0.368	0.400	0.424	0.43		6000	0.334	0.315	0.299	0.311	0.358	0.390	0.418	0.440	0.57
2	7000	0.327	0.309	0.294	0.281	0.277	0.323	0.361	0.391	0.43	2	7000	0.330	0.312	0.296	0.283	0.312	0.352	0.386	0.412	0.57
	8000	0.322	0.305	0.290	0.278	0.262	0.277	0.322	0.358	0.43		8000	0.326	0.308	0.293	0.280	0.266	0.313	0.354	0.385	0.57
	9000	0.318	0.301	0.287	0.275	0.259	0.242	0.284	0.325	0.43		9000	0.322	0.305	0.290	0.278	0.262	0.275	0.321	0.357	0.57
	5000	0.336	0.317	0.315	0.345	0.387	0.414	0.439	0.457	0.30		5000	0.338	0.318	0.337	0.364	0.403	0.428	0.451	0.467	0.43
	6000	0.332	0.313	0.297	0.284	0.332	0.368	0.400	0.424	0.30		6000	0.334	0.315	0.299	0.311	0.358	0.390	0.418	0.440	0.43
3.5	7000	0.327	0.309	0.294	0.281	0.277	0.323	0.361	0.391	0.30	3.5	7000	0.330	0.312	0.296	0.283	0.312	0.352	0.386	0.412	0.43
	8000	0.322	0.305	0.290	0.278	0.262	0.277	0.322	0.358	0.30		8000	0.326	0.308	0.293	0.280	0.266	0.313	0.354	0.385	0.43
	9000	0.318	0.301	0.287	0.275	0.259	0.242	0.284	0.325	0.30		9000	0.322	0.305	0.290	0.278	0.262	0.275	0.321	0.357	0.43
	5000	0.336	0.317	0.315	0.345	0.387	0.414	0.439	0.457	0.21		5000	0.338	0.318	0.337	0.364	0.403	0.428	0.451	0.467	0.33
	6000	0.332	0.313	0.297	0.284	0.332	0.368	0.400	0.424	0.21		6000	0.334	0.315	0.299	0.311	0.358	0.390	0.418	0.440	0.33
5.5	7000	0.327	0.309	0.294	0.281	0.277	0.323	0.361	0.391	0.21	5.5	7000	0.330	0.312	0.296	0.283	0.312	0.352	0.386	0.412	0.33
	8000	0.322	0.305	0.290	0.278	0.262	0.277	0.322	0.358	0.21		8000	0.326	0.308	0.293	0.280	0.266	0.313	0.354	0.385	0.33
	9000	0.318	0.301	0.287	0.275	0.259	0.242	0.284	0.325	0.21		9000	0.322	0.305	0.290	0.278	0.262	0.275	0.321	0.357	0.33
	5000	0.336	0.317	0.315	0.345	0.387	0.414	0.439	0.457	0.19		5000	0.338	0.318	0.337	0.364	0.403	0.428	0.451	0.467	0.29
6.5	6000	0.332	0.313	0.297	0.284	0.332	0.368	0.400	0.424	0.19	6.5	6000	0.334	0.315	0.299	0.311	0.358	0.390	0.418	0.440	0.29
6.5	/000	0.327	0.309	0.294	0.281	0.277	0.323	0.361	0.391	0.19	6.5	7000	0.330	0.312	0.296	0.283	0.312	0.352	0.386	0.412	0.29
	8000	0.322	0.305	0.290	0.278	0.262	0.277	0.322	0.358	0.19		8000	0.326	0.308	0.293	0.280	0.266	0.313	0.354	0.385	0.29
	9000	0.318	0.301	0.287	0.275	0.259	0.242	0.284	0.325	0.19		9000	0.322	0.305	0.290	0.278	0.262	0.275	0.321	0.357	0.29

Dimitrios Lignos

Section 12.8.6: Slab effective width for plastic bending resistance calculations

- Partial effective width $b_{eff,Rd}$ of slab for evaluation of M_{Rd}

Table 7.5 (EN1998:2004)

Sign of bending	Location	Transverse element	$b_{\rm c}$ for $M_{\rm Rd}$
moment M			(PLASTIC)
Negative M	Interior	Seismic re-bars	0,17
	column		
Negative M	Exterior	All layouts with re-bars anchored to façade	0,1 /
	column	beam or to concrete cantilever edge strip	
Negative M	Exterior	All layouts with re-bars not anchored to	0,0
	column	façade beam or to concrete cantilever edge	
		strip	
Positive M	Interior	Seismic re-bars	0,075/
	column		
Positive M	Exterior	Steel transverse beam with connectors.	0,075 /
	column	Concrete slab up to exterior face of column	
		of H section with strong axis oriented as in	
		Fig. 7.5 or beyond (concrete edge strip).	
		Seismic re-bars	
Positive M	Exterior	No steel transverse beam or steel transverse	<i>b</i> _b /2 +0,7 <i>h</i> _c /2
	column	beam without connectors.	
		Concrete slab up to exterior face of column	
		of H section with strong axis oriented as in	
		Fig. 7.5, or beyond (edge strip).	
		Seismic re-bars	
Positive M	Exterior	All other layouts. Seismic re-bars	$b_{\rm b}/2 \le b_{\rm e,max}$
	column		$b_{\rm c,max} = 0.05l$

Section 12.8.6: Slab effective width for plastic bending resistance calculations

• Partial effective width $b_{eff,Rd}$ of slab for evaluation of M_{Rd}

Stresses in slab	in slab Column location Transverse element		b _{eff,Rd}
Tensile	Interior	With seismic re-bars	$b_{ m eff}$
Tensile	Exterior	With re-bars anchored to façade beam or to concrete cantilever edge strip. With seismic rebars	$b_{ m eff}$
Tensile	Exterior	With re-bars not anchored to façade beam or to concrete cantilever edge strip. With seismic rebars	0,0
Compressive	Interior/Exterior	Transverse beam with connectors and rigidly connected to column. With seismic re-bars	$b_{ m eff}$
Compressive	Interior/Exterior	No transverse beam with connectors. With seismic re-bars	$b_{\rm c}$ +0,7 $h_{\rm c}$
Compressive	Exterior (perimeter frame)	No transverse beam with connectors. With seismic re-bars	b_{c}

Table 12.7

Section 12.8.6: Slab effective width for plastic bending resistance calculations

• Benchmarking of partial effective width $b_{eff,Rd}$ of slab for evaluation of M_{Rd}

- The integrity of the concrete in compression should be maintained; yielding should be limited to the steel cross section(s)
- Reinforcing rebars in the joint region according to Annex I for slabs

• Joints between steel and reinforced concrete columns according to Annex G (G.5)

Wide face bearing plates

Extended face bearing plates

• Joints between steel and reinforced concrete columns according to Annex G (G.5)

- Joints between steel and reinforced concrete columns according to Annex G (G.5)
- Column horizontal and vertical reinforcing details

- Joints using diaphragm plates according to Annex G (G.6)
- Composite joints using diaphragm plates should be designed as full strength with all plastic deformations localised in the composite steel beam

Section 12.9: Composite moment resisting frames in DC2 and DC3

- Generally, follow the design provisions in 11.9
- Provisions on columns in DC3 (12.9.4):

H-, I-shaped or HSS

 $\frac{N_{\rm Ed,G}}{N_{\rm pl,Rd}} \le 0.30$

Suzuki and Lignos (2015)

Encased, partially encased or filled composite

 $\frac{N_{\rm Ed}}{N_{\rm pl,Rd}} \le 0.75$

Farahi et al. (2022)

Section 12.14: Composite walls in DC2 and DC3

• In primary seismic walls, the normalised design axial load $v_{\rm d,c}$ should be limited

For DC2

For DC3

$$v_{\rm d,c} = \frac{N_{\rm Ed}}{f_{\rm cd}[A_{\rm c} + n_{\rm o}(A_{\rm s} + A_{\rm a})]} \le 0,40$$

$$v_{\rm d,c} = \frac{N_{\rm Ed}}{f_{\rm cd}[A_{\rm c} + n_{\rm o}(A_{\rm s} + A_{\rm a})]} \le 0.35$$

Section 12.9.7: Verification of column base joints

• 11.9.5 and Annex H should be applied

Annex H, H4 (EN1998-1-2:2022)

Annex H, H5 (EN1998-1-2:2022)

Embedded column bases

Dimitrios Lignos

Overview of design examples

- Comparisons between DC2 (EN1998-1-2:2022) and DCM (EN1998:2004)
- Prototype 6-storey building
 - 3-bay composite-steel MRFs and composite steel frames with bracings
 - Site Class D, a_g = 0,22g (Katerini, GR, Braila, RO, Rimini, IT, Sion, CH)
 - Same design spectrum & snow, wind conditions
- Two different designs
 - Composite steel beams with n=100% and n=80%
 - q=3 (for both DC2 and DCM)

Overview of design examples (Cont.)

Source: El Jisr and Lignos (2020)

Comparison of seismic designs: First mode periods

	DCM EN1998:2004 T ₁ [sec]	DCH EN1998-1-2:2022 T ₁ [sec]
Degree of composite action, η=100%	1.63	2.07
Degree of composite action, η=80%	1.67	2.13

Source: El Jisr and Lignos (2020)

Dimitrios Lignos

Comparison of seismic designs: Pushover analysis

Comparison of seismic designs: Pushover analysis

Comparison of seismic designs: Nonlinear response history analyses

Source: El Jisr and Lignos (2020)

Comparison of seismic designs: Nonlinear response history analyses

Thank you for your kind attention!

Questions?

dimitrios.lignos@epfl.ch

Dimitrios Lignos