Second Generation of Eurocode 8

General overview of EN 1998-5:2021
Basis of design
Seismic action for geotechnical
structures and systems

Alain PECKER

Consultant & Ecole des Ponts ParisTech

OUTLINE OF PRESENTATION

- Why revising EN 1998-5?
- Overview of content of EN 1998-5
- Basis of design with emphasis on particular aspects linked to EN 1998-5
- Methods of analyses
- Seismic action in EN 1998-5
- Soil properties

NEEDS AND REQUIREMENTS FOR REVISION

- Reduce the conservatism of the force-based approaches
 - *Revisit the material factors
- Develop the approaches for piles, retaining structures
- Develop the section on Soil-Structure Interaction (SSI)
- Develop a section on the seismic actions on underground structures
- Introduce the displacement-based approaches as alternatives to force-based approaches

OUTLINE OF PRESENTATION

- Why revising EN 1998-5?
- Overview of content of EN 1998-5
- Basis of design with emphasis on particular aspects linked to EN 1998-5
- Methods of analyses
- Seismic action in EN 1998-5
- Soil properties

EN 1998-5

- Part 5 is the chapter, among the 6 parts of the seismic Eurocode (EC8), related to Geotechnical issues.
- Part 5 is a transverse document that should cover
 - new and existing structures
 - Geotechnical systems and geotechnical structures
- Part 5 complements for the seismic design situations and is not a substitute to EN 1997

EN 1998-5 : Project Team

- Alain PECKER: Consultant & Ecole des Ponts ParisTech, Paris
- Luigi CALLISTO: Sapienza Università, Rome
- Antonio CORREIA: Laboratório Nacional de Engenharia Civil, Lisbon
- George GAZETAS: National Technical University, Athens
- Amir KAYNIA: Norwegian Geotechnical Institute, Oslo currently, Norconsult AS
- Kyriazis PITILAKIS: Aristotle University, Thessaloniki
- Philippe BISCH : Chairman of SC8

TABLE OF CONTENT OF EN 1998-5

Chapter 4: Basis of design

• Chapter 5 : Seismic action

• Chapter 6 : Ground properties

• Chapter 8 : Soil structure interaction

• Chapter 9 : Foundation systems

• Chapter 10: Earth retaining structures

• Chapter 11: Underground structures

New

Significantly expanded

EN 1998-5 : Annexes

Annex C: Evaluation of soil settlements

Annex D: Simplified evaluation of soil structure interaction effects

Annex E: Impedance functions for surface and deep foundations

Annex F: Seismic bearing capacity of shallow foundations

Annex G: Evaluation of earth pressures on retaining structures

 Annex H: Simplified evaluation of peak ground parameters for seismic design of underground structures

Annex I: Simplified analytical expressions for the seismic design of tunnels

Annex J: Impedances functions for underground structures

OUTLINE OF PRESENTATION

- Why revising EN 1998-5?
- Overview of content of EN 1998-5
- Basis of design with emphasis on particular aspects linked to EN 1998-5
- Methods of analyses
- Seismic action in EN 1998-5
- Soil properties

BASIS OF DESIGN

- Peculiar aspect : Part 5 has to deal with
 - Geotechnical structures
 - > structure that includes ground or a structural member that relies on the ground for resistance; e.g. retaining walls, slope, dike.
 - Geotechnical systems
 - > complex systems where one geotechnical structure interacts with other structures or geotechnical structures; e.g. retaining walls with a supported structure at the crest, slopes with a structure at the crest or toe.

IMPLICATIONS

GEOTECHNICAL STRUCTURES

- Performance requirements
 - Defined in EN 1998-5
- Consequence classes / Return Period
 - Three classes CC1, CC2 and CC3 (NDP)

Limit State	Consequence class			
	CC1	CC2	CC3	
NC	800	1600	2500	
SD	250	475	800	
DL	50	60	60	

GEOTECHNICAL SYSTEMS

- Performance requirements
 - Defined in EN 1998-1-1 according to LS
- Consequences classes / Return Period
 - Those of the structure

SEISMIC ACTION CLASSES

Defined in EN 1998-1-1

$$S_{\delta} = \delta F_{\alpha} F_{\mathsf{T}} S_{\alpha,475}$$

Used to classify the seismic action

Seismic action class	Range of seismic action index			
Very low	$S_{\delta} < 1.30 \text{ m/s}^2$			
Low	1,30 m/s ² $\leq S_{\delta}$ < 3,25 m/s ²			
Moderate	$3,25 \text{ m/s}^2 \le S_{\delta} < 6,50 \text{ m/s}^2$			
High	$S_{\delta} \ge 6,50 \text{ m/s}^2$			

 Methods of analyses and performance requirements in EN 1998-5 depend on seismic action index S_{δ}

SEISMIC ACTION INDEX

$$S_{\delta} = \frac{\delta F_{\alpha} F_{T} S_{\alpha,475}}{\delta}$$

• δ : NDP

GEOTECHNICAL STRUTURES

	Consequence class					
	CC1	CC2	CC3			
δ	0,6	1,0	1,5			

GEOTECHNICAL SYSTEMS

• Values of δ are equal to those of the structure (see relevant parts of EC8)

METHODS OF ANALYSES

- Force-based approach (FBA)
 - ➤ Compliance checked in terms of generalised stresses
- Displacement-based approach (DBA)
 - Compliance checked by comparison of permanent displacements to acceptable ones

$$E_{\mathrm{Fd}} \leq R_{\mathrm{d}}$$

Design value of action

- FBA: generalised stresses
- DBA: calculated displacements

Design value of

- FBA: resistance
- DBA: allowable displacements

DESIGN VALUE OF RESISTANCE R_d

- Material factor approach (MFA): preferred choice in EN 1998-5
 - ➤ Allowed for displacement-based or force-based approaches

$$R_{\rm d} = R \left\{ \frac{X_{\rm k}}{\gamma_{\rm m}}; a_{\rm d}; \sum F_{\rm Ed} \right\}$$

- Resistance factor approach (RFA)
 - > Allowed only for force-based approaches

$$R_{\rm d} = \frac{1}{\gamma_{\rm R}} R\{X_{\rm k}; a_{\rm d}; \sum F_{\rm Ed}\}$$

- Effect Factor Approach (EN 1997)
 - Does not apply to seismic design situation

DISPLACEMENT-BASED APPROACH

- Acceptable methods to calculate the induced permanent displacements include:
 - Non-linear static analyses
 - Response history analyses
- Response history analyses require the use of accelerograms obtained from natural records (selected as per EN 1998-1-1:2021, 5.2.3.1) or site-specific response analyses
- Although EN 1998-1-1 allows artificial or spectrally matched accelerograms, determination of ground permanent deformations or displacements are better estimated with natural accelerograms recorded in real earthquakes

OUTLINE OF PRESENTATION

- Why revising EN 1998-5?
- Overview of content of EN 1998-5
- Basis of design with emphasis on particular aspects linked to EN 1998-5
- Methods of analyses
- Seismic action in EN 1998-5
- Soil properties

SEISMIC ACTION

 Stability of geotechnical structures/systems involves large volume of soils. Seismic action is not uniform throughout the volume

➤ Spatial incoherence, variation with depth.....

SEISMIC ACTION

• Seismic action defined by a conventional horizontal ground acceleration $a_{\rm H}$

$$a_{\rm H} = \frac{\beta_{\rm H}}{\chi_{\rm H}} \frac{S_{\alpha}}{F_{\rm A}} = \frac{\beta_{\rm H}}{\chi_{\rm H}} PGA_{\rm e}$$

- PGA_e: design value of horizontal peak ground acceleration
- $\beta_{\rm H}$: coefficient reflecting the spatial variation with depth of the horizontal ground motion within the ground mass $(0 \le \beta_{\rm H} \le 1)$
- Horizontal spatial variability of ground motion defined in EN 1998-1-1: 5.2.3.2

SEISMIC ACTION: VARIABILITY WITH DEPTH

- Applicable to FBA or DBA
- Depends on model and method of analysis
- Can be computed from site response analysis
- Simplified evaluation is provided in Annex A

H slope height or height of retaining structure in contact with the soil $V_{\rm S}$ shear wave velocity

$$T_{\rm m} = (T_{\rm B} + T_{\rm C})$$

SEISMIC ACTION

$$a_{\rm H} = \frac{\beta_{\rm H}}{\chi_{\rm H}} \frac{S_{\alpha}}{F_{\rm A}} = \frac{\beta_{\rm H}}{\chi_{\rm H}} PGA_{\rm e}$$

- $\chi_{\rm H}$: coefficient reflecting the amplitude of accepted permanent displacements of the soil-structure system induced by the horizontal ground motion for the considered consequence class and limit state
- $\chi_{\rm H}$: reflects the nonlinear soil behaviour; it depends on soil type and structure
- In DBA $\chi_{\rm H}$ shall be taken equal to 1,0.

OUTLINE OF PRESENTATION

- Why revising EN 1998-5?
- Overview of content of EN 1998-5
- Basis of design with emphasis on particular aspects linked to EN 1998-5
- Methods of analyses
- Seismic action in EN 1998-5
- Soil properties

GROUND PROPERTIES: Deformation

- The profile of the shear wave velocity Vs in the ground should be regarded as the most reliable indicator of the stiffness of the ground layers for seismic design.
- Direct measurement of the Vs profile should be used for moderate and high seismic action classes
- For all other cases, the Vs profile may be estimated by empirical correlations with in-situ tests

EC8

Seismicity level	$150 \le v_{\rm s} < 250 \; {\rm m/s}$		$250 \le v_{\rm s} < 400 {\rm m/s}$		$400 \le v_{\rm s} < 800 {\rm m/s}$		$800 \text{ m/s} \leq v_{\text{s}}$	
	G/G_0	ξ	G/G_0	ξ	G/G_0	ξ	G/G_0	ξ
Very low	0,70 (±0,08)	0,04	0,80 (±0,09)	0,03	1,00	0,03	1,00	0,02
Low	0,50 (±0,14)	0,07	0,65 (±0,16)	0,05	0,80 (±0,10)	0,03	1,00	0,02
Moderate	0,30 (±0,10)	0,10	0,50 (±0,20)	0,07	0,70 (±0,10)	0,05	1,00	0,02
High	0,20 (±0,10)	0,20	0,40 (±0,20)	0,12	0,60 (±0,20)	0,10	0,90 (±0,10)	0,02

NOTE 1 The seismicity level is defined in Table 5.2 of prEN 1998-1-1:2021.

NOTE 2 G_0 is the best estimate value at small strains (< 10⁻⁵), see also prEN 1997-2:2021, 9.1.4 and Annex F.

GROUND PROPERTIES: Strength

- Saturated soils should be considered to behave under undrained conditions
- Soil undrained behaviour may be studied in terms of total stresses, or in terms of effective stresses with due account of the pore water pressure
- In terms of total stresses
 - For fine-grained soils, the appropriate strength parameter should be the undrained shear strength $c_{\rm u}$; $c_{\rm u}$ should consider cyclic degradation effects under long duration earthquake actions.
 - For coarse-grained soil, the appropriate strength parameter should be the cyclic undrained shear strength $\tau_{\rm cv.u}$

GROUND PROPERTIES: Partial factors

- In MFA approach partial factors $\gamma_{\rm M}$ should be applied to the ground strength parameters
- In RFA approach partial factors γ_R should be applied to the resistance
- Partial factors are NDP
- Important remark: values of $\chi_{\rm H}$ given in EN 1998-5 have been calibrated for the recommended partial factors
 - If different values for $\gamma_{\rm M}$ are specified in National Annexes, $\chi_{\rm H}$ needs to be recalibrated

RECOMMENDED PARTIAL FACTORS (NDP)

EN 1998-5:2021

- Undrained shear strength c₁₁: 1,0
- Drained cohesion c': 1,0
- Drained friction angle $(\tan \phi')$: 1,0
- UC strength (rock): 1,0
- Undrained cyclic shear strength: 1,25
- Interface friction angle $(\tan \delta_f)$: 1,0
- Global resistance factor (RFA): 1,0

EN 1998-5:2004

- Undrained shear strength c_{ij} : 1,4
- Drained cohesion c': N/A
- Drained friction angle $(\tan \phi')$: 1,25
- UC strength (rock): 1,4
- Undrained cyclic shear strength: 1,25
- Interface friction angle $(\tan \delta_f)$: N/A
- Global resistance factor (RFA): N/A

08/07/2022 - Alain Pecker

THANK YOU FOR YOUR ATTENTION